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ABSTRACT : Support Vector Machines (SVMs) estimate lithologic properties of rock 
formations from seismic data by interpolating between known models using synthetically 
generated model/data pairs.  SVMs are related to kriging and radial basis function neural 
networks. In our study, we train an SVM to approximate an inverse to the Zoeppritz 
equations.  Training models are sampled from distributions constructed from well-log 
statistics. Training data is computed via a physically realistic forward modelling algorithm.  In 
our experiments, each training data vector is a set of seismic traces similar to a 2-d image.  
The SVM returns a model given by a weighted comparison of the new data to each training 
data vector.  The method of comparison is given by a kernel function which implicitly 
transforms data into a high-dimensional feature space and performs a dot-product. The feature 
space of a Gaussian kernel is made up of sines and cosines and so is appropriate for band-
limited seismic problems. Training an SVM involves estimating a set of weights from the 
training model/data pairs.   It is designed to be an easy problem; at worst it is a quadratic 
programming problem on the order of the size of the training set.  By implementing the 
slowest part of our SVM algorithm on a graphics processing unit (GPU), we improve the 
speed of the algorithm by two orders of magnitude.  Our SVM/GPU combination achieves 
results that are similar to those of conventional iterative inversion in fractions of the time.  

KEYWORDS: SVM, inversion, GPU, AVO 

1. Introduction 

Seismic amplitude variation with offset (AVO) inversion can be used to recover lithologic 
properties of potential hydrocarbon reservoirs (Castagna and Backus, 1993).  Using the non-
linear Zoeppritz equations (Aki and Richards, 1980), the amplitude of a reflected wave can be 
computed as a function of its angle of incidence and contrasts in pressure wave velocity, shear 
wave velocity and density across a geologic interface.  A Support Vector Machine (SVM) can 
be trained to approximate a local inverse to the Zoeppritz equations, making it possible to 
interpret AVO data in a fraction of the time it takes a conventional non-linear iterative 
inversion to do the same.  Further speed gains are made by implementing part of the process 
on a graphics processing unit (GPU).  Graphics cards have up to 350 Gigaflops of potential 
computing power for algorithms that work within their constraints, and generally cost less 
than $500. 

Although SVMs are directly related to kriging, they are relatively new to the geophysical 
literature  (Vapnik, 2008).   They have been proposed for AVO inversion (Kuzma, 2003; 
Kuzma and Rector, 2004; Li and Castagne, 2003), and facies delineation. (Wohlberg et al., 
2006).   (Hidalgo et al, 2003) used a related method to invert electromagnetic data.  SVMs are 
implemented on GPUs in (Ohmer et. al, 2005).  The type of SVM that is illustrated in this 
paper (least squares SVM with a Gaussian kernel) is related to a radial basis function neural 
network (Haykin, 1999). 
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Figure 1 a): Example of training models and training data.   Models are sampled using well-log statistics.  
Data is computed using Zoeppritz equations and convolved with a wavelet.  One time sample of the training 
models corresponds to an image of 11 time samples of training data.   

Figure 1 b): Results using inversion vs. SVM to interpret synthetic data with 5% noise.  

Table 1: SVM does a better job finding known models than inversion, but inversion does a better job 
predicting data.  The SVM is much faster than inversion, partly because it can be trained on many fewer 
models than are necessary to compute the gradients of an iterative inversion. 
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Method 

1.1. Training SVMs to find an inverse relationship 
Given a data vector d, the goal of inversion is to recover a model vector m containing 

earth parameters of interest.  In this study, m is made up of reflectivity contrasts in pressure 
wave velocity, shear wave velocity and density for a series of layers: m = [∆Vp/Vp, ∆Vs/Vs, 
∆ρ/ρ)].  The elements of d are the amplitudes of reflections at offsets from 0 to 40 degrees. 
Since d can be computed from m using the Zoeppritz equations, the goal of an SVM for AVO 
is to find an approximate inverse to the Zoeppritz equations: 

 
( ) ( )ddm 1−≈= ZSVM   .         (1) 

 
Training an SVM requires assembling a training set of known model/data pairs, picking a 

kernel function K and solving for a set of coefficients αααα such that: 
 

( )jij d,dm K
n

i
i∑

=
=

1
α   .         (2) 

 
The model returned by an SVM is a weighted comparison of a data vector to the training 

data vectors.  The kernel gives the method of comparison.   
In our experiments, training models are chosen at random using parameter statistics from 

well-logs.  The choice of training models acts like a Bayesian prior used to regularize an 
inversion (Kuzma and Rector, 2004). Training data is made using the Zoeppritz equations.  
The models and data are zero-padded to make  “layers” of random thickness and the data is 
convolved with a realistic wavelet1.   A subset of training data is shown in Figure 1a). Each 
data vector includes 11 time samples of data and can be thought of as a 2-dimentional image.  
We use roughly 1000 training model/data pairs representing about 100 examples of lithologic 
layers. 

 
Any symmetric positive definite function can be used as a kernel.   By Mercer’s theorem, 

a kernel performs a dot product in a feature space with a transformation defined by φ: 
 

( ) ( ) ( )jiji ddd,d φφ ⋅=K  .         (3) 
 
We use a Gaussian kernel:  
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If the kernel function is a smooth function of the difference between data vectors, then it 

has  a feature space made up of a series of sines and cosines, best explained in (Shawe-Taylor 
and Cristinini, 2005).  The Fourier transform of the kernel function acts as a filter in feature 
space;  if  the σ of a Gaussian kernel is large, the kernel acts as a low-pass filter with small 
bandwidth. We use σ = 0.8.  When data vectors have more than one dimension, the exponent 

                                                
1 If desired, the training data can be expanded by including synthetic data from multiple sources, for example, by 
using the density parameter to generate associated gravity data.   
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in Equation 4 decomposes; the feature space for multi-dimensional data is made of products 
of the sines and cosines of the elements of the data vectors.   

A kernel can be used without any knowledge of its feature space, but understanding the 
feature space of the Gaussian kernel leads to the following insights:  

 
•  An SVM operating with a Gaussian kernel is interpolating between known 

models based on a low-pass filtered version of data space.  The frequency dependence 
of Gaussian kernels can be adjusted to mirror that of band-limited seismic data. 

•  Non-linear relationships are captured by allowing frequencies in various 
dimensions of data space to interact with each other. 

•  Training data ought to adequately sample the data space in accordance with 
Fourier transform theorems. 
 

The names for various SVM algorithms depend on the objective function used to find the 
αααα-coefficients.  We use a least squares SVM (LS-SVM, Suykens et. al., 2002) which is also 
called kernel ridge regression. In all cases, a Gram matrix is constructed, ( )jiji ddK ,, =Γ .  In a 
LS-SVM, this matrix is regularized and inverted. In a classic SVM it is used in a quadratic 
programming problem.  The size of the problem depends on the number of training examples, 
not the size of the feature space or the number of desired model parameters.   

 
1.2. Computation of the Gram matrix on a GPU 

Computation of the Gram matrix is an inherently parallel problem and can be successfully 
implemented on a GPU. The training data is packed into 2-dimentional arrays of colors, 
where each color (red, green, blue, saturation) contains an element of a data vector.  An 
output image is created on the GPU to store the Gram matrix.  When a rectangle is drawn over 
this output image, the SVM kernel function executes over all of the pixels simultaneously.  
Figure 2 compares the performance of an INTEL Pentium M 2 Ghz, vs an nVidia 7800 Go 
chip.  For gram matrices computed from 2000 training vectors with 2000 elements each, the 
GPU is 150 times faster than the CPU. 

 

 

Figure 2: a) Computation of Gram matrix on CPU can take SVM 300 times longer than equivalent 
computation on GPU.    b) The time it takes to invert a data set scales with the size of the data set, 
but the time it takes to interpret a data set using the SVM/GPU combination stays relatively 
constant. 
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Fig. 2b)Fig. 2a) 



Int. Assoc. for Mathematical Geology 
XIth International Congress 
Université de Liège - Belgium 

 Liège – September, 3rd - 8th 2006 S11-24 

2. Results 

Results comparing the performance of a trained SVM relative to an inversion using a 
quasi-Newton method2 are presented in Figure 1 and  Table 1.  The inversion was designed to 
minimize an objective function regularized using the same statistics that were sampled to 
make the training models for the SVM.   The inversion, which minimizes data residuals does 
a better job of finding a model that can be used to fit the data, however the SVM does a better 
job of recovering an exact test model and is much faster than the inversion.  The SVM is 
faster because it only requires about 1000 runs of the Zoeppritz equations in order to generate 
training data vs. the 30,000 runs required to compute the gradients of an iterative inversion, 
and because it can be easily implemented on the GPU.  Figure 2b) illustrates that the time to 
perform an inversion scales with the size of a test data set, but the time to train and run an 
SVM stays the same. 

3. Conclusions and future work 

We have demonstrated the viability of the SVM inversion method and rationalized our 
choice of a Gaussian-based kernel in terms of its Fourier-like feature space.  We are currently 
applying the method to more realistic synthetic data and to field data.  We are implementing 
the complete SVM algorithm on a GPU and we are experimenting with using Genetic 
Algorithms combined with SVM inversion to optimize experimental design.   
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